Strictly-upward Drawings of Ordered Search Trees

نویسندگان

  • Pierluigi Crescenzi
  • Paolo Penna
چکیده

We prove that any logarithmic binary tree admits a linear-area straight-line strictly-upward planar grid drawing (in short, strictly-upward drawing), that is, a drawing in which (a) each edge is mapped into a single straight-line segment, (b) each node is placed below its parent, (c) no two edges intersect, and (d) each node is mapped into a point with integer coordinates. Informally, a logarithmic tree has the property that the height of any (sufficiently high) subtree is logarithmic with respect to the number of nodes. As a consequence, we have that k-balanced trees, redblack trees, and BB[a]-trees admit linear-area strictly-upward drawings. We then generalize our results to logarithmic m-ary trees: as an application, we have that B-trees admit linear-area strictly-upward drawings. @ 1998-Elsevier Science B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Area-eecient Algorithms for Upward Straight-line Tree Drawings ?

In this paper, we investigate planar upward straight-line grid drawing problems for bounded-degree rooted trees so that a drawing takes up as little area as possible. A planar upward straight-line grid tree drawing satisses the following four constraints: (1) all vertices are placed at distinct grid points (grid), (2) all edges are drawn as straight lines (straight-line), (3) no two edges in th...

متن کامل

Optimum-width upward drawings of trees I: Rooted pathwidth

An upward drawing of a rooted tree is a drawing such that no parents are below their children. It is ordered if the edges to children appear in prescribed order around each vertex. It is well-known that any tree has an upward (unordered) drawing with width log(n+ 1). For ordered drawings, the best-known bounds for the width for binary trees is O(logn), while for arbitrary trees it is O(2 √ ). W...

متن کامل

On Upward Drawings of Trees on a Given Grid

Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algo...

متن کامل

Upward Tree Drawings with Optimal

Rooted trees are usually drawn planar and upward, i.e., without crossings and without any parent placed below its child. In this paper we investigate the area requirement of planar upward drawings of rooted trees. We give tight upper and lower bounds on the area of various types of drawings, and provide linear-time algorithms for constructing optimal area drawings. Let T be a bounded-degree roo...

متن کامل

Planar upward tree drawings with optimal area

Rooted trees are usually drawn planar and upward i e without crossings and with out any parent placed below its child In this paper we investigate the area requirement of planar upward drawings of rooted trees We give tight upper and lower bounds on the area of various types of drawings and provide linear time algorithms for constructing optimal area drawings Let T be a bounded degree rooted tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 203  شماره 

صفحات  -

تاریخ انتشار 1998